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Multigrid continuation methods are used to solve the steady, axisymmetric incompressible 
NavierStokes equations for Taylor-Couette flows between cylinders of finite or intinite 
length. Using Schaeffer’s homotopy, we compute (for finite cylinders) anomalous modes 
(those seeming to have an odd number of vortices, or seeming to have the “wrong” direction 
of rotation at an endplate). The results show that these modes possess extra vortices not 
observed in the experiments of Benjamin and Mullin (Proc. Rev. SIC. London 
Ser. A 377 (1981), 221; J. Fluid Mech. 121 (1982), 219). Our computations verify conjectures of 
Schaeffer, and of Benjamin and Mullin on the unfolding of the bifurcation diagram as periodic 
(infinite cylinder) flows are continuously transformed to flows with rigid ends. We obtain five 
distinct solutions with the same Reynolds number, aspect ratio, and radius ratio, and give a 
systematic procedure for obtaining them. The numerical results show qualitative agreement 
with the experiments of Benjamin and Mullin. They also show quantitative agreement with 
the more recent experiments of Cliffe and Mullin (J. Fluid Mrch. 153 (1985), 243). 1 1987 
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1. INTRODUCTION 

The experiments of Benjamin and Mullin [ 1, 2, 31 revived interest in the Taylor 
vortex problem, first studied by G. I. Taylor in 1923 [27]. They also stimulated 
interest in computations of problems with multiple solutions. 

In these experiments the inner cylinder rotates and the outer cylinder and top 
and bottom endplates are fixed. The fluid is thrown outward by centrifugal force. 
The no-slip condition retards this outward motion near the top and bottom, so one 
normally expects the outward flow to be greatest midway between the top and bot- 
tom (hereafter called the midplane). Hence, if the flow contains Taylor vortices, one 
expects the flow to be inward near the top and bottom, and outward at the mid- 
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plane. This is exactly what is observed in what Benjamin and Mullin call the “nor- 
mal” modes (e.g., Fig. 4(a)). These modes or primary flows are the ones which can 
be experimentally generated by starting the apparatus at low Reynolds number 
(rotation rate of the inner cylinder), and slowly increasing it. Symmetry arguments 
also suggest that Taylor vortex flows should possess an even number of cells. 

In 1981 Benjamin and Mullin [2] reported experiments which showed what they 
called anomalous modes: stable Taylor vortex flows “that exist only at sufficiently 
high Reynolds number R and are always distinct from the primary flow...” These 
anomalous modes seem to have an odd number of Taylor vortices and/or seem to 
have cells adjacent to the end plates spiraling in the “wrong” direction. We prefer 
this latter description of anomalous although the definition of Benjamin and Mullin 
may be broader and could include flows not yet observed or computed. They also 
suggested a bifurcation diagram for the “anomalous two modes,” i.e., those which 
appeared to have two cells. 

Benjamin and Mullin’s construction of the bifurcation diagram was based on the 
work of Schaeffer [24]. His analysis proceeds directly from the steady, incom- 
pressible NavierStokes equations. Schaeffer started from the well-known bifur- 
cation diagram for infinite cylinder (periodic) flow. He introduced a homotopy 
(given in Sect. 2) between the infinite cylinder and finite cylinder problems. The 
homotopy parameter value r = 0 gives the former and r = 1 gives the latter. Schaef- 
fer studied the change in the bifurcation diagram as t is increased from zero. At 
T =0 this is just perturbed bifurcation theory. He then made the assumption that 
the behavior obtained for “small” r was qualitatively the same as the behavior for 
T = 1, i.e., finite cylinder flow. His work applied to configurations with an even 
number tz >2 of vortices and explained the existence of cusps and hence of 
hysteresis effects. For technical reasons his results did not apply to two-vortex 
flows. However, Benjamin and Mullin [2] employed Schaeffer’s homotopy and 
unfolding arguments to explain the anomalous modes they observed for two-vortex 
flows. 

The results of this paper are fourfold. First, our computations show that the 
anomalous modes all contain additional “hidden” vortices apparently not observed 
or not reported by Benjamin and Mullin. These vortices are much smaller and 
weaker than the ones they observed. When these “hidden” vortices appear in the 
flow pictures (contours of the stream function) all suggestions of “wrong” direction 
of rotation or of odd numbers of vortices disappear. (A similar result was obtained 
by Cliffe [9] for so-called one-vortex flows.) 

Second, we numerically implement the homotopy of Schaeffer. We find, as both 
Schaeffer and Benjamin and Mullin assumed, that the bifurcation diagram for small 
r is qualitatively the same as that for T = 1. Indeed it was not even clear before that 
the homotopy existed for the entire interval, 0 < 5 < 1. We use this homotopy to 
start from a two-cell mode for infinite cylinders and obtain an anomalous two-cell 
mode for finite cylinders. The operation of this homotopy is illustrated here for the 
first time (Fig. 3). Then we use this finite cylinder solution to trace out (using con- 
tinuation methods) the entire bifurcation diagram which Benjamin and Mullin 
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proposed for the two-cell modes. We thus numerically confirm their bifurcation 
diagram. 

Third, our implementation of the homotopy provides a systematic procedure for 
obtaining anomalous modes. Benjamin and Mullin’s bifurcation diagram has the 
anomalous modes disconnected from the “normal” modes. Thus, if this is the correct 
picture, ordinary continuation (in the Reynolds number or the aspect ratio) from 
the normal modes will not succeed in locating the anomalous modes. We compute 
anomalous n cell modes for n = 2 through 6. For n = 2 we show five distinct 
solutions of the Taylor problem with the same Reynolds number, aspect ratio, and 
radius ratio. 

Fourth, we compute the locus of fold points with respect to Reynolds number as 
the aspect ratio is varied (i.e., a fold in the “sheet” of solutions above the plane of 
aspect ratio and Reynolds number). We discover new geometric features in the 
5- and 6-mode folds. We also see that the “hidden” vortices in the a-mode at low 
aspect ratios each split into two subvortices. Our results agree qualitatively with the 
folds located experimentally by Benjamin and Mullin, but there is a 30% quan- 
titative disagreement. 

After obtaining these results (a preliminary version of which was reported in [4]) 
we received a report by Cliffe and Mullin [lo] in which they independently 
calculated some of the anomalous modes by using Schaeffer’s homotopy. They also 
conducted new experiments in which they observed the “hidden” vortices. In the 
process they discovered that the old experiments were incorrect by 30%. Our 
results show good agreement with their new experiments and with their com- 
putaions. 

Other recent computations of Taylor vortex flows are as follows. Time-dependent 
computations were performed by Neitzel [23] and by Fasel and Booz [13] for 
axisymmetric flows in finite cylinders, and by Marcus [19] for flows in infinite 
cylinders. Steady, axisymmetric flows have been computed by Meyer-Spasche and 
Keller [21, 223 for infinite cylinders, and for finite cylinders by Cliffe and 
co-workers [9, 10, 11, 171 and by Strikwerda [25]. 

Finally, some comments on two points of terminology are in order. Families of 
solutions of nonlinear problems in which one parameter varies are said to have 
“fold points,” “limit points,” “turning points,” or “one-sided bifurcations.” These are 
all meant to describe the same behavior (and the latter two phrases are most unfor- 
tunate). If the problems depend upon two or more parameters we can fix all but 
one of the parameters, say I, and then have a fold or limit point with respect to 1. If 
now a second parameter is allowed to vary, the fold point sweeps out a curve of 
folds or simply a “fold” (in the two-parameter plane). 

We know that the so-called one-cell modes actually contain two cells [9]. 
Furthermore, we now know that the “anomalous two modes” (cf. Fig. 4) and 
“anomalous three modes” (Fig. 5) which Benjamin and Mullin observed actually 
contain four cells. Nevertheless it is frequently convenient to retain the original 
terminology in order to distinguish these quite distinct flows. At other times we 
shall refer to them as anomalous flows with four vortices (or cells). 
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2. FORMULATION 

The experimental setup employs a pair of concentric circular cylinders of radii R, 
and RI, R, < RZ, and length L, with rigid end walls fastened to the outer cylinder. 
The gap between the cylinders is tilled with viscous incompressible fluid of 
kinematic viscosity v, and the inner cylinder rotates about the common axis with 
angular velocity Q. The outer cylinder and ends are at rest. The flow is assumed to 
be steady and axisymmetric. 

We use cylindrical polar coordinates (v, 0,~) with corresponding velocities 
(u, u, M’). The origin of coordinates is at the intersection of the axis of rotation with 
the plane passing through the bottom of the annulus. 

The variables are made dimensionless by using the gap width d= R, - R, and the 
velocity QR, of the inner cylinder as reference length and velocity, respectively. The 
problem is characterized by three dimensionless parameters: the Reynolds number 
R = QR,d/v based on gap width, the aspect ratio f = L/d, and the radius ratio 
q = R,/R,. Using the Stokes stream function, the Navier-Stokes equations can be 
reduced to (Goldstein [ 161) 

zr ” ; ’ ‘(*’ D2*) I 2 ‘* D’$ -’ 04,) = Q 
(3 - - r a(/-, z) ).2 (7- - R ’ 

Here the swirl operator D’ is introduced as 

D’=ri’ I? L’z - 
c?r r ?r 

+ (7;?’ 

the Laplacian is 

and the Jacobian is 

The equations are to be solved in the annulus 

p<r<p+l, o<z<r, 

where p = q/( 1 -q). The radial and axial velocities are given by 

1 a* u= --- 
r ii,- 

and 1 ati u’=--. 
r ?r 

respectively. 

(2.1) 

(2.2) 

(2.3) 
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The boundary conditions on the cylindrical surfaces are 

+=alC/pn=o at r = p, p + 1; (2.4) 

ll=l at r=p; (2.5) 

v=o atr=p+l. (2.6) 

Here a/an denotes the outward normal derivative. 
At the bottom z = 0 and top z = r we prescribe, following Schaeffer [24], a one- 

parameter family of boundary conditions depending on a homotopy parameter 5, 

* =o, (2.7) 

(1 - t) a2gad + dt+bpn = 0, (2.8) 

(1 -t)ao/an+tu=O. (2.9) 

The value r = I describes finite cylinders, and t = 0 gives what Schaeffer calls quasi- 

periodic (in 2) boundary conditions. A solution (q, II) with quasi-periodic boundary 
conditions is related to one with periodic (in Z) boundary conditions in one of two 
ways. Either the former is the same as the latter; or else, a solution of the former 
defined for 0~ z d r can be extended to a solution with periodic boundary con- 
ditions over - l-d z < r by defining $ (resp. u) as an odd (even) function of z. Thus 
a quasi-periodic solution can contain an odd number of vortices but a periodic 
solution cannot. These boundary conditions provide a continuous deformation 
(or homotopy) of the periodic flows into flows with experimentally realistic end 
conditions. 

After the stream function and azimuthal velocity are determined, we calculate the 
pressure by solving a Poisson equation (in cylindrical coordinates) 

subject to Neumann boundary conditions, with u and w  given by (2.3). This 
equation is derived by taking the divergence of the u and w  momentum equations. 
The boundary conditions come from evaluating these momentum equations on the 
boundaries. 

The above equations are used for flows which appear to have no symmetry in Z. 
For flows such as “normal modes” and anomalous modes with an even number of 
cells, we compute on only half the domain 0 6 z d f/2, changing only the boundary 
conditions at the midplane Z= r/2. We use (2.8) and (2.9) at z = r/2, but with r 
replaced by 0, regardless of the actual value of T. We also replace the pressure 
boundary condition here by aplan = 0. 

The (0 component of the) vorticity is determined by taking the swirl of the 
stream function: 
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3. NUMERICAL METHODS 

Equations (2.1), (2.2) are discretized on a sequence of uniform grids using second 
order centered finite differences. 

Let N, and NZ be the number of grid intervals in the r and z directions, respec- 
tively. Define the step sizes Ar = l/N, and AZ = f/N, (AZ = f/2N, for a symmetric 
solution on half the region). The radial step Ar need not equal the axial step AZ. Let 
yi = p + iAr and :, = jdz. Let $,,, and c,,, approximate + and v at (yi, zi). The dis- 
cretizations of (2.1) and (2.2) are imposed for i= 1, 2,..., N, - 1. To define the j 
range, let the bottom index B be 0 if T # 1 and 1 if T  = 1. Let the top index T be N, 
if r # 1 or if the solution is symmetric in Z, and N, - 1 otherwise. Then the dis- 
cretization of (2.1) is imposed for j= 1, 2,..., NZ - 1, while that of (2.2) is imposed 
forj=Bto T. 

The differencing of the differential equations is straightforward. We discretize 
(2.2) as 

1 
___ Ir,(~,+1.,-~,-I.,)(vi.,+I-~i.i I) 
4rf ArAz 

- ($,.,+ I -IcI,,,~l)(ri+lv,+l.,-ri~i~‘, I.,)] 

,+I/zV,+I.~-~~~V,,,+~,~ 1,‘2u,-- I./ c’,,,+ I - 2C,., + v,,, , v 
+ --(II r, (Ar)’ (4~)~ r f 1 = 0. 

The differencing of (2.1) is equally straightforward but very complicated. The stencil 
occupies 13 points. 

For the Neumann boundary conditions (2.4), (2.8) (2.9) we introduce image 
points outside the region (at i = - 1 and N, + 1 and at ,j = - 1 and N, + 1) and also 
use centered second order approximations. These equations are used to eliminate 
the image points from the discretizations of (2.1) and (2.2). 

The resulting discretized equations can then be written as a system of 
(N, - 1 )( N, + T - B) nonlinear algebraic equations depending on four parameters 

G(u; R, I-, v], T) = 0. (3.1) 

Here u is a vector whose components are the inerlaced values I/;,, and v,,,, ordered 
first in increasing i and then in increasing j. This system is solved using Euler- 
Newton pseudo-arclength continuation [IS]. Generally we hold three parameters 
constant and vary the fourth, except during fold-following, to be discussed below, 
when two parameters are held constant and two are varied. 

A disadvantage of this procedure is that considerable storage is required for the 
Jacobian G, of the system (3.1). (Here G, is a large block pentadiagonal matrix.) 
To circumvent this difficulty we combine continuation with the multigrid method 
[6]. Our method uses the fill, accommodative multigrid method with the full 
approximation scheme. (See Brandt [6] for definitions of these terms.) For 
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smoothing on all but the coarsest grid we use alternating zebra (alternating line or 
block) GaussSeidel-Newton relaxation [26]. The usual 9-point operator is used 
to project residuals onto coarser grids. 

The multigrid method employs a nested sequence of grids over the same region. 
Each grid typically has a grid spacing which is half the grid spacing of its 
predecessor. Thus in a typical run, the finest grid may have 80 r-intervals by 160 
z-intervals, while the coarsest grid may have only 5 r-intervals by 10 z-intervals. 
Our multigrid continuation method [S] combines the frozen tau technique [6] 
with pseudo-arclength continuation and correction of the continuation parameter 
on the coarsest grid. As a result, we need store the Jacobian G, onf.y on the coarsest 
grid, and this produces considerable storage savings. 

A difficulty with the multigrid method for singular perturbation problems in the 
range of Reynolds numbers that we consider is that the solution may be well 
resolved on the finest grid, but poorly resolved on coarser grids. The result is 
divergence of the multigrid iteration. To circumvent this we use a “double dis- 
cretization” method [IS]: on all but the finest grid we add an artificial viscosity to 
the smoothing operator but not to the coarse grid residual transfer operator. This 
preserves the second order accuracy of the scheme. 

The pressure equation is solved using multigrid but not continuation. Since the 
Neumann problem is singular, we must ensure that the discrete problem satisfies an 
appropriate consistency condition (derivable from a discrete Green’s Theorem). We 
smooth using checkerboard Gauss-Seidel. The coarse grid equations are solved 
directly after discarding one equation to make the system nonsingular. The 
arbitrary solution constant is chosen by prescribing the (discrete) average pressure 
to be zero. 

To compare our results with the experiments of Benjamin and Mullin, we 
employed the following “fold-following” procedure. Each anomalous mode has a 
fold (or limit) point with respect to Reynolds number. As the aspect ratio is varied, 
we obtain a locus of such points, or a fold in a “sheet” of solutions. These folds give 
the approximate parameter values where the experimental anomalous modes lose 
stability and hence collapse. To continue along the fold in the (Z-, R)-plane, we fix 
the parameters q and T, and use Euler-Newton pseudo-arclength continuation for 
an augmented system of nonlinear equations. This method is due to Fier and Keller 
[14, 151. Another method has been given by Moore and Spence [22]. 

The augmented system is 

G(u; R, r) = 0, (3.2a) 

G,*Y = 0, (3.2b) 

Gg Y = constant, (3.2~) 

together with the normalization condition for arclength parametrization 

(il, e> + A2 + F’= 1, 
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or for pseudo-arclength parametrization 

(i~,u-u,)+d(R-R,)+j‘(Gf,,)=s-s,. (3.3) 

The former normalization is used for the Euler step and the latter is used for the 
Newton iterations. Here G, denotes the Jacobian matrix at the point 
P= {uo; 4,. To), * denotes the adjoint (or matrix transpose), Y* is the left null 
vector of the Jacobian at P, s is the pseudo-arclength parameter, “. ” denotes c?/ds 
evaluated at P, and ( , ) denotes the usual discrete L, inner product 
approximating the continuous one. Note that Y does not appear in the nor- 
malization conditions. The system of equations for the Newton iterates is obtained 
by expansion of (3.2), (3.3) with respect to small changes in u, R, r, and Y. This 
leads to a system of linear equations for the changes: u - uO, Y’ - ‘PO, R - R,, and 
f-f,,. The solution of the augmented linear system can be obtained by solving 
three bordered systems. This, in turn, requires the solution of three systems with 
matrix G,, and two systems with matrix G,*. The Euler step requires the solution of 
one system with matrix G,, and one with matrix G,d. * Finite differences are used to 
approximate second derivatives such as G,,,, or GlrR. 

This algorithm is implemented with the aid of the bandsolver DGBCO/SL/DT in 
LINPACK [ 123. LINPACK allows the solution of systems with matrices G, or G,T 
so we require only one factorization of the Jacobian G,, per Euler or Newton step. 
The condition estimator in LINPACK is useful to verify that we stay on the fold, 
since the determinant cannot be used here. Furthermore, the condition estimator 
supplies the right null vector and is trivially modified to supply the left null vector 
Y of G,,, both of which are required in the Euler step. (This is not surprising, since 
the condition estimator effectively performs one inverse iteration with each of 
matrices G, and Gz.) An advantage of this method is that it can be implemented 
using only slightly more storage than pseudo-arclength continuation in one 
parameter. But we have not yet tried to combine this algorithm with the multigrid 
method. 

Our formulation of Eq. (3.2~) differs from that in [ 14, 151 where the constant is 
set to one. We choose our constant before each Euler step by suitably normalizing 
the left null vector Y’ from LINPACK (by letting its discrete Lz norm equal 1 ), and 
setting the constant equal to the left side of (3.2~). The constant is fixed until we 
converge to the next fold point. Using the formulation in [14, 151 leads to a badly 
scaled \Y in our problem. 

4. COMPUTING ANOMALOUS MODES BY CONTINUATION 

In this section we will describe the structure of the bifurcation diagram for the 
anomalous two-modes, and show how it is related to the bifurcation diagram for 
periodic flows. Then we will explain how we use continuation to compute 
anomalous n-cell modes for n 2 2. We have employed this algorithm for 
n = 2, 3,4, 5, and 6. 
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The structure of these bifurcation diagrams was first analyzed by Schaeffer [24] 
for flows with an even number of cells, and by Benjamin and Mullin [Z] for the 
interaction of an N cell and an N+ 1 cell mode. Figure 1 shows a schematic bifur- 
cation diagram of one and two cell quasi-periodic flows (r = 0) for an aspect ratio f 
near one. Couette flow (shown as lying on the R axis) bifurcates into one-ceil and 
two-cell flows at pitchfork bifurcation points P, and P,, respectively. The points S, 
and Sz are secondary (pitchfork) bifurcation points for the two-cell flows. 

Following [2], we now explain the symmetry axes A and S in Fig. 1 and 2. Let 
Couette flow have velocity components (u, v, W) = (0, uO, 0). Two symmetry classes 
can be distinguished for quasi-periodic flows: the “class (i)” or “symmetric” flows, 
for which the velocities u and u are even (symmetric) about the midplane z = r/2 
while M‘ and $ are odd (antisymmetric); and the “class (ii)” or “antisymmetric” 
solutions, with U, v - co, MS, and $, respectively, odd, odd, even, and even about the 
midplane. The axes then indicate that a point which lies in the (R, S) plane has no 
antisymmetric component, while a point which lies in the (R, A) plane has no sym- 
metric component. Thus the flows in Fig. 1 which issue from the top or bottom 
prongs of the secondary pitchfork bifurcation points S, and S, are neither sym- 
metric nor antisymmetric. 

The main idea in [24] and [2] for analyzing the flows is to increase the aspect 
ratio until the points P, and P, coalesce, and use the methods of bifurcation theory 
to explain the behavior of the bifurcation diagram for “small’ r and for P, near P,. 
The primary bifurcation at P, is split, but the others are not because of the sym- 

FIG. 1. Schematic bifurcation diagram for one and two cell quasi-periodic flows. Couette flow bifur- 
cates into one-cell and two-cell flows at points P, and P,, respectively. The points S, and S, are secon- 
dary bifurcation points for the two-cell flows. The S and A axes are related to the symmetry (in z) of the 
flows (see text). 



COMPUTATION OF ANOMALOUS MODES 239 
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Anomalous 2 modes 

“1 cell” 

----a R 

FIG. 2. Schematic bifurcation diagram for “normal” two cell, “one cell,” and “anomalous two cell” 
finite cylinder flows. The “one cell” flow actually contains two unequal cells. The “anomalous two cell” 
flows in fact consist of four cells. The primary bifurcation point Pz in Fig. I has been split, resulting in a 
solution branch (the anomalous modes) which is cli.rco~ec~rerl from the branch of the normal two cell 
modes. 

metry. Assuming that the qualitative behavior of the bifurcation diagram is the 
same for “small” r as for r = 1, Benjamin and Mullin 123 obtained the schematic 
bifurcation diagram for finite cylinder flows in Fig. 2. Here the positive R axis, 
shown dotted for clarity, is not part of a flow. Couette flow in Fig. 1 has been trans- 
formed into “normal” two-cell flow. The one-cell quasi-periodic flows of Fig. 1 have 
become the so-called “one-cell” finite cylinder flows, and actually contain two une- 
qual cells [9]. The primary bifurcation point P, in Fig. 1 has been split, resulting in 
a solution branch (the anomalous modes) which is disconnectrd from the branch of 
the normal two cell modes. As we shall see, the “anomalous two-cell” flows in fact 
consist of four cells. The figure is meant to show that symmetric finite cylinder flows 
exist, but antisymmetric ones cannot. Moreover, if (II/(;), U(I)) is a solution, then so 
is ( - $(r- z), u(T- 2)). Thus, the image in the (R, S) plane of any solution is also 
a solution. These facts are evident from the differential equations and boundary 
conditions. 

Our strategy for systematically computing anomalous modes is as follows. We 
start with Couette flow with quasi-periodic boundary conditions (T = 0) at small 
Reynolds number (e.g., 20). If we desire an n-cell anomalous mode, we set the 
aspect ratio to n. Then we continue in Reynolds number, increasing until we reach 
the first bifurcation point. (This is detectable by a change in the sign of the deter- 
minant of the Jacobian G,. The techniques for detecting, and switching branches at 
bifurcation points are by now standard [lS].) It will be a (supercritical) pitchfork 
bifurcation from Couette flow into an n-cell quasi-periodic flow. Of the two possible 
bifurcating branches, we continue from the one with cells whose direction of flow 
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nearest the z = 0 and z = f ends is outward (towards the outer cylinder) when n is 
even. Equivalently, the desired branch has a negative radial velocity u at the center 
(r, Z) = (p + $, r/2) of the annulus. (If we continue from the other branch, we will 
obtain normal modes for finite cylinders.) When n is odd, we can follow either 
branch, since we will obtain finite cylinder anomalous modes in both cases. (The 
branching direction from the bifurcation point is given by the right null vector of 
the Jacobian G,,, which can be calculated cheaply from the matrix factorization of 
G,, [IS].) Next we continue in Reynolds number on the appropriate bifurcated 
branch, increasing until approximately R = 250. Then we switch from quasi- 
periodic to finite cylinder flow by fixing the Reynolds number and continuing in 
increasing z (the boundary homotopy parameter) from 0 to 1. 

The birth of hidden vortices by continuation in T is illustrated in Figs. 3a-e for 
n = 2 at five values of r. The contour plots show the intersection of the annulus with 
the (r, 2) plane through the axis of rotation, with the inner (rotating) cylinder at the 
left. Stream function contours are shown above and vorticity contours below in 
part 1 of the figure, and azimuthal velocity contours are shown in part 2 of the 
figure. The solutions were computed by multigrid continuation on a 65 x 65 grid 
(on half the region, using symmetry) at Reynolds number 240, aspect ratio 2, and 
radius ratio 0.615. This radius ratio is the one used in the experiments of Benjamin 
and Mullin, and the computations of Cliffe and Mullin, and is used in all com- 
putations in this paper. All contour plots in this paper are drawn with their true 
aspect ratios. The respective values of T are 0,0.5,0.7,0.8, and 1.0. The azimuthal 
velocity contours clearly show the change in the boundary conditions at top and 
bottom. When n is even (odd) we see two (one) extra vortice(s) forming at the 
end(s) z = 0 and z = f. If one looks only at stream function contours, the extra vor- 
tice(s) do not seem to appear until r =0.8. (The zero stream function contours, 
across which the (r, 2) flow reverses, are those which intersect the boundaries.) 
However, the vorticity plots reveal incipient vortices as early as t =0.50. (The same 
early behavior is shown by contour plots of radial or axial velocity.) For n = 3 this 
behavior occurs for the same values of t. Indeed, in all the cases we tried, the extra 
vortices did not form fully until r = 0.8 or later. Since these new features occur for 
relatively large z values, they could not have been determined by perturbation 
calculations about r = 0. Thus Benjamin and Mullin could have had no theoretical 
evidence to explain the fate of the anomalous modes for n = 2. 

The algorithm for n = 2 can be related to Figs. 1 and 2, with one slight change. 
As mentioned, these figures were drawn for an aspect ratio near one, rather than 
two as in our algorithm. To apply the algorithm to Fig. 1, we start with Couette 
flow and continue in increasing Reynolds number until we reach the second bifur- 
cation point P,. We take the branch in the negative S direction and follow it a “suf- 
ficient” distance (say R = 250) possibly but not necessarily past the bifurcation 
point S,. Then we fix R and continue in r from 0 to 1. We will arrive on the branch 
of anomalous modes in the (R, S) plane of Fig. 2. Depending on the aspect ratio 
and Reynolds number, we may arrive near point 6, F, Sz, or c. For n = 2 we hap- 
pened to arrive at point b. 
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After we have computed an anomalous mode, we fix r = 1 and continue in 
Reynolds number, decreasing until we reach the point F in Fig. 2, which is on the 
fold in the (r, R) plane. 

The requirement that R be “sufficiently large” before continuing in increasing t 
with R fixed is not restrictive in practice. If it is violated, and we continue in z with 
R fixed, we will observe extra vortice(s) form near z = 0.8, as before, but a fold 
(limit) point in T occurs for t < 1, so it is impossible to continue to t = 1 with this 
grid size. In contrast, when R is “sufficiently large” and the grid is sufficiently line, 
the same fold point occurs for r > 1. This illustrates a general principle: geometric 
features such as pitchfork bifurcation points and fold points persist on different size 
grids, but their locations may change. (This may not be true for transcritical bifur- 
cations.) The strategy, then is to start on a very coarse grid: 8 x 8n for an 
anomalous n-cell mode. If a fold point is encountered near r = 0.8, halve the grid 
size. If continuation to T = 1 is still not possible, continue in increasing R with z 
fixed near 0.8 and repeat. 

5. NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENTS 

In Figs. 4a-d we show four distinct solutions of the finite cylinder Taylor 
problem for the same Reynolds number, aspect ratio, and radius ratio. (By reflec- 

tion in cased, we actually get live distinct solutions.) The points at which these 
solutions were evaluated are indicated by the corresponding letters in Fig. 2. The 
parameters are the same as in the previous section, expect that the homotopy 
parameter r = I, and we did not take advantage of the symmetry so that we could 
determine stability. 

Figure 4a shows the normal two-cell mode for the finite cylinder. This is easily 
obtained by starting with Reynolds number 20 (where there is a unique solution 
which can be obtained using a zero initial guess) for finite cylinders and continuing 
in increasing Reynolds number. (The small lines in the upper and lower right-hand 
corners of the stream function plots are anomalies of the contour plotting routine.) 
Figure 4b (the same as 3e) shows the anomalous two-mode that was obtained by 
the procedure outlined above. The sign of the Jacobian determinant det(G,) of this 
solution is the same as the sign of the Jacobian for (periodic) Couette flow, 
indicating possible stability. 

By continuing to decrease R until the fold point is reached and then proceeding 
to increase R on the other branch, we first encounter a secondary pitchfork bifur- 
cation point (Fig. 2). If we then continue on the middle branch of the pitchfork, we 
obtain Fig. 4c. The sign of the Jacobian of this solution is the same as before (by 
exchange of stability). Finally, Fig. 4d shows an anomalous mode which is unsym- 
metric in 2, and is thus on the top or bottom prong of the pitchfork. There is 
another solution symmetrically located on the other prong, obtained by reflection 
in Z. Both of these solutions have opposite stability from the previous solutions (by 
either exchange of stability or our numerical results) and thus are unstable. 
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b d 

FIG. 4. Distinct finite cylinder solutions for the same physical parameters: R (Reynolds number) 
= 240, r (aspect ratio) = 2, q (radius ratio) =0.615. (a)-(d) correspond to the points labelled on the 
schematic diagram in Fig. 2. (a) normal two-cell mode. (b), (c) anomalous two-cell modes which are 
symmetric in :; (d) anomalous two-cell mode which is unsymmetric in c and not stable. A fifth solution 
is obtained by reflection of Fig. 4d in the plane : = r/2 and is not shown. 

Thus we have two anomalous two-cell solutions which may be stable. It is not 
clear which one was observed by Benjamin and Mullin [2], but we guess it was the 
first one, Fig. 4b, since it has smaller “hidden” vortices. 

The so-called anomalous one-cell modes have already been computed by Cliffe 
(1983). (These consist of two unequal cells.) We obtained them independently and 
agree with his results. 

Thus we have confirmed completely the bifurcation diagram of Fig. 2 proposed 
by Benjamin and Mullin for the so-called one-cell modes and the so-called 
anomalous two-cell modes. 

Figure 5 shows an anomalous three-cell mode computed by the same procedure. 
A mirror image solution also exits. Figures 6a and b show two anomalous four-cell 
modes, computed using the symmetry in z. The first has large “hidden” vortices and 
the second has small ones. 
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FIG. 5. Anomalous three-cell mode. The parameter values are listed on the plot. Also given is the 
maximum absolute value of the stream function i. 

FIG. 6. Anomalous four-cell modes computed on a 25 x 75 grid, using symmetry. The Reynolds num- 
bers and aspects ratios are (a) 283.92 and 2.886 and (b) 305.98 and 5.683. The extra vortices are large in 
the former and small in the latter. 
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A new phenomenon is illustrated in Fig. 7 for low aspect ratio and high Reynolds 
number in the anomalous two mode: the splitting of the extra vortices into two 
smaller vortices. We did not observe this in the other modes, but Fig. 6a points to a 
tendency in this direction, which might be observed at higher Reynolds numbers. 

Figures 8 and 9 show anomalous five- and six-modes, respectively. Both solutions 
lie on their respective folds. We encountered pitchfork bifurcation points close to 
the folds for the anomalous four and six modes. 

All these anomalous modes have extra “hidden” vortices not observed in the 
experiments of Benjamin and Mullin [2], but observed in the new experiments of 
Cliffe and Mullin [lo]. These vortices become progressively smaller and weaker 
with increasing Reynolds number. 

In Figure 10 we give a quantitative comparison of our results with the 
experiments of Benjamin and Mullin [2, p. 2391, and with the experiments and 
computations of Cliffe and Mullin [lo]. We note that the former authors used a 
Reynolds number based on inner radius, but in later papers based their Reynolds 
number on gap width. So all references to Reynolds number in this paper will be in 
terms of gap width. 

Figure 10 shows six curves. The upper left solid curve is our computed locus of 
fold points in the aspect ratio-Reynolds number plane for the anomalous two 
modes. The upper middle (right) solid curve is the same, but for the anomalous 
three (four) modes. All calculations use radius ratio q = 0.615. The two (resp. three-, 
four-) modes are computed on a 33 x 73 (resp. 25 x 73, 25 x 73) grid. The even 
modes are computed on half the region using symmetry. (As mentioned above, the 
multigrid method was not used for these computations.) The lower left (resp. mid- 
dle, right) dotted curve is the experimental two (resp. three, four) mode locus of 
fold points as determined by Benjamin and Mullin [2]. Our curves agree to 
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FIG. 7. Anomalous two-cell mode showing the splitting of the small vortices into two smaller 
vortices. 
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FIG. 10. Locus of limit points of anomalous two-, three-, and four-cell modes at aspect ratio 
q = 0.615 and comparison with experiments. The solid curves are calculated by us. To graphical accuracy 
they agree with the calculations of Cliffe and Mullin [IO] except for the dashed portion of the three- 
mode curve. The dotted curves are the original (erroneous) experiments of Benjamin and Mullin 121. 
The crosses are the more recent experiments of Cliffe and Mullin [lo] for the anomalous four-mode at 
ty = 0.6. 

graphical accuracy with the computed folds of Cliffe and Mullin [lo] except for the 
dashed portion of their three-mode curve. The crosses are the more recent 
experiments of Cliffe and Mullin for the anomalous four mode. These are not 
strictly comparable, since they are for aspect ratio ye = 0.6 instead of 0.615 as on all 
the other curves. 

In Figure 6 we showed two anomalous four modes. Both lie on the anomalous 
four fold curve, but the four-cell mode of Figure 6a (resp. 6b) lies on the left (resp. 
right) side of the fold. In general we find that the *‘hidden” vortices become smaller 
with increasing aspect ratio. 

Qualitatively our computed curves have the same shape as those determined by 
the old experiments, but quantitatively there is a large discrepancy. For example, 
we calculated the minimum Reynolds number of our two-, three-, four-cell curve 
near (r, R)=(2.12, 221) (2.92, 223), (3.75, 218), respectively. But from the graph 
in Benjamin and Mullin (1981) it appears that their minimum occurs at 
approximately the same aspect ratio, but at R = 176 (resp. 174, 172). Thus we have 
a disagreement of approximately 30% with the old experiments. However, we 
obtain very good agreement with the new experiments and the computations of 
Cliffe and Mullin, except for the three mode curve at large values of the aspect 
ratio. 
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FIG. I I. Fold curves for anomalous 2, 3,4. 5, and 6 modes. The leftmost three curves are the same as 
in Fig. 9. The curves for the 5 and 6 modes have a cusp at the lower left. The left side of these curves is 
nearly a straight line. 

Figure 11 shows the computed locus of fold points in the aspect ratio-Reynolds 
number plane for the anomalous 2, 3, 4, 5, and 6 modes. The number of solution 
points used to plot these curves was 49, 82, 47, 153, and 209, respectively. The 2-, 
3-, and 4-mode curves are the same as in the previous figure. The 5 and 6 modes are 
computed on 25 x 97 and 25 x 81 grids, respectively; the latter employing symmetry. 
The points of minimum Reynolds number on these curves are at (r, R) = (4.46, 
226.3) and (5.31, 220.5) respectively. Two new geometric features arise for n = 5 
and 6 that are not present in the other curves. The first is a cusp in the lower left 
part of each curve, located at (3.91, 233.5) and (4.63, 229.5) respectively. The 
second is the strange straight-line appearance of the left sides of the curves. In fact, 
they are almost straight lines. We have checked them by computing the 5 mode 
curve on a different grid. As a further test we continued off the fold, holding one 
parameter fixed, then continued in the other parameter until a limit point was 
detected. We verified that the previously computed fold went through this limit 
point. For example, we started at fold point R = 402.51, r= 3.720 and continued in 
increasing aspect ratio until f = 3.857. Then we fixed r and continued in decreasing 
Reynolds number until we detected the limit point at R = 261.9. During fold- 
following, we had obtained the nearby fold points (r, R) = (3.849, 265.1) and 
(3.863, 259.6). Interpolating linearly at f = 3.857 we obtained R = 261.9, in 



COMPUTATION OF ANOMALOUS MODES 249 

TABLE I 

Location of Minimum Reynolds Number of Fold for 
Anomalous Two-Modes by Repeated Richardson Extrapolation 

N, 

Computed Extrapolated 

N, Reynolds Reynolds number (order) 
number 4 6 8 

16 36 210.204 
20 45 213.264 218.704 
24 54 215.261 219.800 220.676 
28 63 216.588 220.265 220.750 220.786 
32 72 217.501 220.480 220.757 220.762 

agreement with the limit point just found. This procedure was repeated three times 
on different parts of the “straight line” portion of the curve with the same result. 

Our step control mechanism [S] enables us to continue through the cusps 
without human intervention in the program. We monitor the angle between suc- 
cessive tangent vectors as well, which provides additional evidence of the cusps. 

To gauge the accuracy of our computed folds, we locate the minimum Reynolds 
number of the fold of the anomalous two-mode (the upper left curve in Fig. 10) on 
a sequence of grids, and perform repeated Richardson extrapolation. Brent’s [8] 
derivative-free one-dimensional minimizer Localmin is used here. The results are 
shown in Table I. The first two columns show the number of intervals in the r and II 
directions. (Symmetry is used here.) The third column gives the computed Reynolds 
number of the minimum point of the fold. Column 4, 5, and 6 give the results of 
Richardson extrapolation to orders 4, 6, and 8, respectively. Our basic calculation 
appears to be globally second order accurate, as we have assumed. Furthermore, 
the location of the minimum appears to be at R=220.8 with an error of at most 
one unit in the last place. A similar Richardson procedure on the aspect ratio yields 
an extrapolated value I-= 2.12. We also extrapolated a different set of grids with the 
same results. (We did not use Richardson extrapolation to determine the minimum 
Reynolds number of the other folds.) 

The reason for our disagreement with Cliffe and Mullin for large aspect ratios in 
the anomalous 3 fold may be related to the discontinuities in the stream function at 
the top and bottom of the inner cylinder. Cliffe and Mullin used refined finite 
elements at these locations. Although we believe both our calculations are second 
order accurate, we require more grid points than they do to obtain the same results. 
The large aspect ratios are the ones which require the most grid points, and this is 
where we disagree. The odd modes are the ones where the disagreement appears 
because the symmetry in the even modes effectively yields a doubling of the number 
of grid points in the z direction. 
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6. CONCLUSIONS AND EXTENSIONS 

From this work we draw four conclusions. First, our computations suggest 
phenomena (extra vortices) that may have been overlooked in experiments. Second, 
we have numerically confirmed Schaeffer’s use of homotopy, and Benjamin and 
Mullin’s adoption of this method to obtain the structure of the bifurcation diagram 
for the anomalous two-modes. Third, our computations are in qualitative 
agreement with the experiments of Benjamin and Mullin for the fold of anomalous 
two-, three-, and four-modes, and in quantitative agreement with the more recent 
experiments of Cliffe and Mullin. Finally, we have shown that the multigrid method 
can be used with the pseudo-arc-length continuation procedure to yield a powerful 
technique for solving bifurcation problems in fluid dynamics. Indeed, the multigrid 
method can be considered as continuation in the grid size. 

Some extensions of the current work are immediately suggested. Near the top 
and bottom of the inner cylinder uniform, nested (multilevel) refinements should be 
used [7]. The fold-following algorithm of Section 3 should be extended to use mul- 
tigrid. We can also increase the order of accuracy from second to fourth order using 
tau extrapolation (deferred correction) [IS], at least for periodic flows. Work is in 
progress in these areas. 
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